A NEW APPROACH TO 5H-PYRANO[2,3- d]PYRIMIDINE DERIVATIVES

Štefan Marchalín and Josef Kuthan
Department of Organic Chemistry,
Prague Institute of Chemical Technology, 16628 Prague 6

Received December 14th, 1983

Abstract

Reaction of 2 -amino-3,5-dicyano-4 H -pyran derivative I with triethoxymethane gives the corresponding 2-ethoxymethyleneamino derivative II which reacts with amines RNH_{2} to give $5 H$-pyrano $[2,3-d$]pyrimidines of general formula III. Spectral characteristics of compounds IIIa-IIIg are discussed.

Pyrimidines with a condensed 2 H - and 4 H -pyran nucleus belong to little known heterocycles. So far only the derivatives with $4 H$-pyran cycle have been prepared, viz. from barbituric acid or its 1,3-disubstituted derivatives and tetracyanoethylene ${ }^{\mathbf{1}}$, from 1,3-diphenyl-2-propen-1-one ${ }^{2}$, arylidenemalonitriles ${ }^{3}$, from formaldehyde and 1-bromo-2-phenylacetylene ${ }^{4}$, from aldehydes and phenylacetylene ${ }^{4}$, and by cyclization of 5-(3-phenylpropargyl)barbituric acid ${ }^{5}$. These syntheses produce the 4 H -pyran ring by condensation to the starting pyrimidine ring. There exists, however, also the opposite synthetic approach consisting in synthetic condensation of the pyrimidine ring to the starting $4 H$-pyran ring. It is known ${ }^{6-8}$ that syntheses of this type can advantageously use homocyclic and heterocyclic o-enaminonitriles which give 4-aminopyrimidine derivatives according to Scheme 1 . The present communication deals with the first application of this approach, where C means $4 H$-pyran nucleus, which makes use of the available ${ }^{9}$ starting compound I. Condensation of this $4 H$-pyran I with triethoxymethane gave 6-(4-biphenylyl)-2-ethoxymethyleneamino-4-phenyl-3,5-

Scheme 1

-dicyano-4H-pyran(II) which reacted with primary amines RNH_{2} in ethanol or tetrahydrofurane to give $5 H$-pyrano [2,3-d] pyrimidines IIIa-IIIf in the yields of $39-96 \%$. The reaction is slightly exothermic, and the less soluble products $I I I$ are separated within few minutes. Application of hydrazine gave the compound IIIg which contains the hydrazine residue at 4 position. It is noteworthy that yields and melting points of the pyranopyrimidines III a-IIIf decrease with magnitude of the substituent \mathbf{R}. We suppose that the mechanism of formation of the $5 H$-pyrano [2,3-d] pyrimidines $I I I$ is analogous to that of pyrazole ${ }^{6}$ and oxazole derivatives ${ }^{7}$ (see Scheme 1), where it was possible to trap the intermediates of the type $I V$. Structure of the compounds IIIa-IIIg was verified by means of IR and NMR spectral characteristics. The ${ }^{13} \mathrm{C}$ NMR spectra of compounds II, IIIc, and IIId exhibit the signals characteristic of a heterocyclic skeleton (Scheme 2) and signals of phenyl atoms in the region

$11 / c$

IIId

Scheme 2
of $127 \cdot 3-144 \cdot 9 \delta$ which could not be resolved. The chemical shifts were assigned with the help of the published ${ }^{13} \mathrm{C}$ NMR spectra of $4 H$-pyran I (ref. ${ }^{9}$) and 2,6 -di-phenyl-3,5-dicyano-4-(N,N-dimethylformamidino)-4H-pyran ${ }^{10}$ and by application of the APT technique. If the compounds III had open amidine structures, they should possess the ${ }^{13} \mathrm{C}$ NMR spectra with signals of two CN groups, as it is the case with the ethoxymethyleneamino derivative $I I$, but such spectra were not observed with the compounds IIIc and IIId.The signal at $146 \cdot 4 \delta$ (IIIc) and 148.9δ (IIId) corresponding to the quaternary carbon atom was assigned to the $\mathrm{C}_{(4)}$ atom formed by the cyclization of the primary amidine. The ${ }^{1} \mathrm{H}$ NMR spectra of all the pyrano[2,3-d]pyrimidines IIIc-IIIf contain the signals of the methylene group of R substituent attached to the nitrogen atom in the form of multiplets of higher order. This fact indicates
a relatively strong interaction between the protons of the methylene group with the NH proton, which would not be observable in the alternative structure $I V$, which agrees with exclusive or predominant structure of the compounds III. The said presumption was confirmed by measuring the ${ }^{1} \mathrm{H}$ NMR spectrum of the N -benzyl derivative IIIf in the presence of ${ }^{2} \mathrm{H}_{2} \mathrm{O}$. By elimination of the interaction of NH proton, the multiplet of methylene group of the R substituent is simplified to two doublets of the $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ type located at $4 \cdot 38 \delta$ and $4 \cdot 66 \delta$ with the geminal coupling constant ${ }^{2} J_{\mathrm{HH}}=15.0 \mathrm{~Hz}$. The asymmetry of the splitting of the doublets of magnetically non-equivalent protons of the CH_{2} group of benzyl group and simultaneous presence of the singlet of the $\mathrm{H}-\mathrm{C}_{(2)}$ proton at 8.33δ are probably due to specific non-periplanar conformation of the molecule at the $\mathrm{N}-\mathrm{CH}_{2}$ bond. The absorption band $r(\mathrm{~N}-\mathrm{H})$ in the IR spectra of the compounds IIIb-IIIf was also found in the region

1

IIIu. $\mathrm{R}=\mathrm{H}$
IIIh. $\mathrm{R}=\mathrm{CH}_{3} \quad$ IIIf. $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
$\left\|/ / c, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{3} \quad \quad\right\| / \mathrm{g}, \mathrm{R}=\mathrm{NH}_{2}$
IIId, $\mathrm{R}=n \cdot \mathrm{C}_{3} \mathrm{H}_{7}$

$$
\text { 117. } \mathrm{x}-\mathrm{nc}
$$

/I

IV
typical for secondary amino group (Table I). Typical for the heterocyclic skeleton of the compounds $I I I$ are the values of the proton $\mathrm{H}-\mathrm{C}_{(5)}$ shift at $4 \cdot 46-4.75 \delta$ and the absorption band of the coupled $v(C=C)$ at $1640-1680 \mathrm{~cm}^{-1}$ (Table I). The $5 H$-pyrano $[2,3-d]$ pyrimidine chromophore is manifested in the UV spectra of compounds $I I I b-I I I g$ by three characteristic absorption maxima at 247 nm $(\log \varepsilon 4.26-4.39), 258-271 \mathrm{~nm}(\log \varepsilon 4.31-4 \cdot 36)$, and $297-299 \mathrm{~nm}(\log \varepsilon 4.33-$ 4.37).

Unsuccessful were the experiments which applied in the said transformations the precursor type I with the $3-\mathrm{CN}$ group replaced by $3-\mathrm{COOCH}_{3}$ group: the failure was due to inertness of this compound to triethoxymethane.
Table I

Compound	UV spectrum ${ }^{\text {a }}$		IR spectrum $\left(\mathrm{CHCl}_{3}\right)^{\text {b }}, \mathrm{cm}^{-1}$					${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}, 35^{\circ} \mathrm{C}\right)^{\boldsymbol{c}}$ δ, ppm
	$\lambda_{\text {max }}, \mathrm{nm}$	$\log \varepsilon$	$v(\mathrm{~N}-\mathrm{H})$	$v(=\mathrm{C}-\mathrm{H})$	$v(\mathrm{C} \equiv \mathrm{N})$	$v(\mathrm{C}=\mathrm{C})^{d}$ and $v(\mathrm{C}=\mathrm{N})^{d}$		
IIIa	259	$4 \cdot 32$	3362 w	3040 w	2207 s	1680 s	1655 s	$\begin{aligned} & 4.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)), 7 \cdot 24-7.93(\mathrm{~m}, \\ & \left.15 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.20\left(\text { br. s, } 2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$
	290	$4 \cdot 40$	$3160 \mathrm{w}^{\text {e }}$			1603 m	1572 m	
IIIb	246	$4 \cdot 28$	3348 w	3010 m	2218 w	1658 s	1577 m	$\begin{aligned} & 3 \cdot 37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.49(\mathrm{~s}, 1 \mathrm{H}, \\ & \mathrm{H}-\mathrm{C}(5)), 7 \cdot 30-8.00(\mathrm{~m}, 16 \mathrm{H} \\ & \left.\mathrm{H}_{\text {arom }} \text { and } \mathrm{NH}\right) \end{aligned}$
	264	$4 \cdot 31$				1619 m		
	299	$4 \cdot 35$						
IIIC	247	$4 \cdot 28$	3340 w	3020 m	2216 w	1660 s	1612 m	$\begin{aligned} & 1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), \\ & 4.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)), 7.22-8.00 \\ & \left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{\text {arom }} \text { and } \mathrm{NH}\right) \end{aligned}$
	265	$4 \cdot 32$				1619 m	1577 m	
	299	$4 \cdot 34$						
IIId	247	$4 \cdot 29$	3348 w	3018 m	2218 m	$\begin{aligned} & 1660 \mathrm{~s} \\ & 1619 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1610 \mathrm{~m} \\ & 1575 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0.94\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74(\mathrm{~m}, 2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2}\right), 3.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.47 \\ & (\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)), 7.24-8.04(\mathrm{~m}, \\ & \left.16 \mathrm{H}, \mathrm{H}_{\text {arom }} \text { and } \mathrm{NH}\right) \end{aligned}$
	265	$4 \cdot 33$						
	299	$4 \cdot 36$						
IIIe	247	$4 \cdot 29$	3342 w	3010 m	2214 m	$\begin{aligned} & 1660 \mathrm{~s} \\ & 1619 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1610 \mathrm{~m} \\ & 1575 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1 \cdot 31(\mathrm{~m}, 2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1 \cdot 70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.81 \\ & \left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.47(\mathrm{~s}, 1 \mathrm{H}, \\ & \mathrm{H}-\mathrm{C}(5)), 7.27-8.07(\mathrm{~m}, 16 \mathrm{H}, \\ & \left.\mathrm{H}_{\text {arom }} \text { and } \mathrm{NH}\right) \end{aligned}$
	265	$4 \cdot 33$						
	298	$4 \cdot 35$						
IIIf	247	$4 \cdot 39$	3445 m	$\begin{aligned} & 3070 \mathrm{w} \\ & 3014 \mathrm{~m} \end{aligned}$	2214 m	$\begin{aligned} & 1640 \mathrm{~s} \\ & 1600 \mathrm{i} \end{aligned}$	1578 s	$4 \cdot 22-4 \cdot 88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4 \cdot 52(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)), 6.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {ortho }}\right)$, $7 \cdot 10-8.04\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\text {arom }}\right.$ and NH), 8.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)$)
	258	$4 \cdot 36$					1506 s	
	297	$4 \cdot 37$						
IIIg	246	$4 \cdot 26$	3340 m	3080 w	2205 s	1652 s	1590 w	
	271	$4 \cdot 35$	3320 m	3024 w		1606 s	1570 s	$\begin{aligned} & \left.\mathrm{NH}_{2}\right), 7.13-7.85\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), \\ & 8.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
	298	$4 \cdot 33$						

[^0] deuteriodimethyl sulphoxide; ${ }^{d}$ the pyranopyrimidine skeleton; ${ }^{e} 3475 \mathrm{w}(\mathrm{O}-\mathrm{H})$, see Experimental.

EXPERIMENTAL

The temperature data are not corrected. The melting points were determined with a Boetius apparatus. The spectral characteristics were measured with a Perkin-Elmer 325 apparatus (IR), a Carl Zeiss Specord UV VIS (UV), a Varian XL-100 (${ }^{1} \mathrm{H}$ NMR), and a Tesla BS 567 (${ }^{13} \mathrm{C}$ NMR). The thermogravimetric measurements were carried with a Stanton Redcroft TG 750 apparatus. The NMR spectra were measured with tetramethylsilane as the internal standard.

6-(4-Biphenylyl)-2-ethoxymethyleneamino-4-phenyl-3,5-dicyano-5H-pyran (II)

A mixture of 4.5 g 2 -amino-3,5-dicyano- $4 H$-pyran ${ }^{9} I$ and 10 ml triethoxymethane was boiled 5 h . The solution formed was left to stand 24 h , whereupon it separated a precipitate, which was collected by suction, washed with ethanol, and recrystallized from ethanol. Yield $4.2 \mathrm{~g}(81 \%)$, m.p. $164-166^{\circ} \mathrm{C}$. For $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ (431.5) calculated: $77.93 \% \mathrm{C}, 4.92 \% \mathrm{H}, 9.74 \% \mathrm{~N}$; found: $77.99 \% \mathrm{C}, 5.09 \% \mathrm{H}, 10 \cdot 19 \% \mathrm{~N}$. IR spectrum $\left(\mathrm{CHCl}_{3}\right), \tilde{v}_{\max }\left(\mathrm{cm}^{-1}\right): 3020 \mathrm{w}(=\mathrm{C}-\mathrm{H}), 2222 \mathrm{~m}$ $(\mathrm{C}=\mathrm{N}), 1670 \mathrm{~s}, 1622 \mathrm{~s}$ (the pyrane skeleton). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta(\mathrm{ppm}): 1 \cdot 36(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $4.39\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.42\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}_{(4)}\right), 7.22-7.89\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.26(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}$). UV spectrum (ethanol): $\lambda_{\max } 255 \mathrm{~nm}(\log \varepsilon 4 \cdot 37), 267 \operatorname{sh}(\log \varepsilon 4 \cdot 38), 288(\log \varepsilon 4 \cdot 44)$.

4-Amino-7-(4-biphenylyl)-5-phenyl-6-cyano-5H-pyrano[2,3-d]pyrimidine (IIIa)

A suspension of 0.6 g 2-ethoxymethyleneamino-3,5-dicyano-4H-pyran $I I$ in 10 ml ethanolic amonia (17%) was stirred at room temperature 4 h , a precipitate being formed after first 5 min already. The separated solid IIIa was collected by suction, washed with little water, with ethanol, and recrystallized from acetone or benzene. Yield $0.45 \mathrm{~g}(80 \%)$, m.p. $269-271^{\circ} \mathrm{C}$ (decomp.). For $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(411.5)$ calculated: $75.88 \% \mathrm{C}, 4.66 \% \mathrm{H}, 13.62 \% \mathrm{~N}$; found: $75.90 \% \mathrm{C}$, $4 \cdot 62 \% \mathrm{H}, 13 \cdot 54 \% \mathrm{~N}$. The compound IIIa crystallizes as semihydrate, which was confirmed by thermogravimetry. The TG curve obtained shows a mass decrease in the temperature interval of $169-271^{\circ} \mathrm{C}$ corresponding to splitting off of one water molecule from two molecules of IIIa.

7-(4-Biphenylyl)-5-phenyl-6-cyano-4-methylamino-5H-pyrano[2,3-d]pyrimidine (IIIb)

This compound was prepared from $4 H$-pyran $I I$ and aqueous solution of methylamine (35%) in similar way as $I I I a$ in the yield 96%, m.p. $275-277^{\circ} \mathrm{C}$ (benzene-ethanol). For $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$ (416.5) calculated: $77.85 \% \mathrm{C}, 4.85 \% \mathrm{H}, 13.45 \% \mathrm{~N}$; found: $78 \cdot 14 \% \mathrm{C}, 4.96 \% \mathrm{H}, 13.57 \% \mathrm{~N}$.

7-(4-Biphenylyl)-4-ethylamino-5-phenyl-6-cyano-5H-pyrano[2,3-d]pyrimidine (IIIc)
This compound was prepared from $I I$ and aqueous solution of ethylamine (45%) in tetrahydrofurane in similar way as IIIa in the yield 93%, m.p. $256-258^{\circ} \mathrm{C}$ (benzene). For $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}$ ($430 \cdot 5$) calculated: $78 \cdot 11 \% \mathrm{C}, 5 \cdot 16 \% \mathrm{H}, 13 \cdot 02 \% \mathrm{~N}$; found: $77.92 \% \mathrm{C}, 5.36 \% \mathrm{H}, 12.96 \% \mathrm{~N}$.

7-(4-Biphenylyl)-5-phenyl-6-cyano-4-n-propylamino-5 H -pyrano[2,3-d]pyrimidine (IIId)

Solution of 0.15 g n-propylamine in 1 ml tetrahydrofurane was added at once to a solution of $0.43 \mathrm{~g} \mathrm{4H}$-pyran $I I$ in 2 ml tetrahydrofurane. The mixture was left to stand 12 h , the separated solid was collected by suction, and the filtrate was poured in 50 ml saturated solution of sodium hydrogen carbonate to give the second portion of the solid product. The combined products IIId were washed with little water, with ethanol, and recrystallized from a $1: 1$ acetone-ethanol mixture. Yield $0.4 \mathrm{~g}\left(90 \%\right.$), m.p. $191-193^{\circ} \mathrm{C}$. For $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}(444 \cdot 6)$ calculated: $78 \cdot 34 \% \mathrm{C}$, $5.45 \% \mathrm{H}, 12.61 \% \mathrm{~N}$; found: $78.35 \% \mathrm{C}, 5.74 \% \mathrm{H}, 12.91 \% \mathrm{~N}$.

7-(4-Biphenylyl)-4-n-butylamino-5-phenyl-6-cyano-4H-pyrano[2,3-d]pyrimidine (IIIe)
This compound was obtained from $I I$ and n-butylamine in similar way as IIId in the yield 39%, m.p. $185-187^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}$ ($458 \cdot 6$) calculated: $78.57 \% \mathrm{C}, 5.73 \% \mathrm{H}, 12.22 \% \mathrm{~N}$; found: $78.33 \% \mathrm{C}, 5 \cdot 77 \% \mathrm{H}, 12 \cdot 43 \% \mathrm{~N}$.

4-Benzylamino-7-(4-biphenyl)-5-phenyl-6-cyano-5 H -pyrano[2,3-d]pyrimidine (IIIf)
A mixture of 0.43 g 4 H -pyran $I I$ and 0.2 g benzylamine in 4 ml tetrahydrofurane was stirred 4 h . The solvent was distilled off at reduced pressure, and the raw oily product was dissolved in warm ethanol. The solution was cooled with solid carbon dioxide to give a yellow precipitate which was collected by suction and recrystallized from a $1: 1$ benzene-ethanol mixture. Yield $0 \cdot 2 \mathrm{~g}(41 \%)$, m.p. $205-207^{\circ} \mathrm{C}$. For $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}$ ($492 \cdot 6$) calculated: $80 \cdot 46 \% \mathrm{C}, 4 \cdot 92 \% \mathrm{H}, 11 \cdot 38 \% \mathrm{~N}$; found: $80 \cdot 34 \% \mathrm{C}, 4 \cdot 99 \% \mathrm{H}, 11 \cdot 40 \% \mathrm{~N}$.

7-(4-Biphenylyl)-5-phenyl-4-hydrazino-6-cyano-5H-pyrano[2,3-d]pyrimidine (IIIg)
This compound was prepared from II and hydrazine hydrate (85%) in ethanol in similar way as $I I I a$ in the yield of 81%, m.p. $204-206^{\circ} \mathrm{C}$ (decomp.), recrystallization from acetone. For $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}(417.5)$ calculated: $74.79 \% \mathrm{C}, 4.60 \% \mathrm{H}, 16.78 \% \mathrm{~N}$; found: $74.66 \% \mathrm{C}, 4.98 \% \mathrm{H}$, $16 \cdot 70 \% \mathrm{~N}$.

REFERENCES

1. Junek H., Aigner H.: Chem. Ber. 106, 914 (1973).
2. Subba R. A., Mitra R. B.: Indian J. Chem. 12, 1028 (1974).
3. Sharanin Yu. A., Klokol G. V.: Khim. Geterotsikl. Soedin. 1983, 277.
4. Schulte K. E., von Weissenborn V., Tittel G. L.: Chem. Ber. 103, 1250 (1970).
5. Schulte K. E., Reisch J., Mock A., Kauder K. H.: Arch. Pharm. (Weinheim) 296, 235 (1963).
6. Taylor E. C., McKillop A. in the book: Advances in Organic Chemistry: Methods and Results (E. C. Taylor, Ed.), Vol. 7, p. 238. Interscience Publishers, New York 1970.
7. Ohtsuka Y.: Bull. Chem. Soc. Jap. 43, 3909 (1970).
8. Watson A. A.: J. Org. Chem. 42, 1610 (1977).
9. Marchalín S., Kuthan J.: This Journal 48, 3123 (1983).
10. Morimura S.: Heterocycles 14, 1449 (1980).

Translated by J. Panchartek.

[^0]: ${ }^{a}$ Ethanol, c $4 \cdot 10^{-5} \mathrm{~mol} 1^{-1} ;{ }^{b}$ the compounds $I I I a$ and $I I I g$ were measured in KBr disc; ${ }^{c}$ the compounds IIIa and IIIg were measured in hexa-

